pyrregular.models.svm
SVM Pipeline. Supports LCSS kernel and uses a custom TimeSeriesSVC class to handle the kernel.
Module Attributes
This pipeline applies standardize → convert_to_nested → drop_na → TimeSeriesSVC with LCSS kernel. |
Classes
|
- class pyrregular.models.svm.TimeSeriesSVCFix(kernel=None, kernel_params=None, kernel_mtype=None, C=1, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)[source]
Bases:
TimeSeriesSVC
- predict_proba(X)[source]
Predicts labels probabilities for sequences in X.
- Parameters:
X (sktime compatible time series panel data container of Panel scitype) –
time series to predict labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- Returns:
y_pred – predicted class label probabilities 0-th indices correspond to instance indices in X 1-st indices correspond to class index, in same order as in self.classes_ entries are predictive class probabilities, summing to 1
- Return type:
2D np.array of int, of shape [n_instances, n_classes]
- pyrregular.models.svm.svm_pipeline = Pipeline(steps=[('standardize', ApplyFunc(fn_kwargs={}, func=<function _standardize>)), ('convert_to_nested', ApplyFunc(fn_kwargs={'to_type': 'nested_univ'}, func=<function convert_to>)), ('drop_na', DropNATransformer()), ('svc', TimeSeriesSVCFix(kernel=LcssTslearn(global_constraint='sakoe_chiba', sakoe_chiba_radius=10), max_iter=1000))])
This pipeline applies standardize → convert_to_nested → drop_na → TimeSeriesSVC with LCSS kernel.